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Abstract-This paper deals with the experimental results of turbulent thermal convection in a horizontal 
water layer with uniform volumetric energy sources and a constant rate of bottom heating. The experimental 
data were compared with a simple boundary layer analysis which expressed the upper and the lower surface 
modified Nusselt numbers as functions of two independent Rayleigh numbers, based respectively on the 
volumetric heating rate and the surface-to-surface temperature difference. A practical correlation equation 
was derived for the bulk core temperature depending upon a single dimensionless parameter which measures 

the relative rates of internal and external heating 

NOMENCLATURE 

thermal diffusivity ; 
proportionality constant in equations (3) 
and (6); 
gravitational acceleration ; 
proportionality constant in equations (22) 

and (25); 
constant exponent in equations (22) and 

(25); 
layer depth ; 
constant exponent in equations (3) and (6); 
external Nusselt number, qL/lAT; 
internal Nusselt number, QL’/IAT; 
modified Nusselt number, 2q/QL; 
heat flux ; 
volumetric rate of energy generation; 

coefficient of correlation ; 
external Rayleigh number, gflATL’/av; 
internal Rayleigh number, g/?QL5/2E.av; 
temperature ; 
surface-to-surface temperature difference, 

T,- T,; 
dimensionless distance, z/L; 
vertical coordinate, 0 5 z 5 L. 

Greek symbols 

Q, proportionality constant in equation (18); 

B? isobaric coefficient of volumetric expansion ; 
Y9 constant exponent in equation (18); 

6, thermal boundary layer thickness; 

8, dimensionless temperature, (T - T,)/AT ; 
J.3 thermal conductivity ; 

;. 
kinematic viscosity ; 
dimensionless parameter defined in equation 

(35). 

Subscripts 
E, external ; 
1, internal ; 
4 boundary layer ; 
0, lower surface ; 
1, upper surface. 

INTRODUCTION 

THERMAL convection in a fluid with distributed energy 

sources appears widely in geophysics, astrophysics and 
engineering. Thermal convection driven by energy 
sources has been proposed as a mechanism for the 
earth’s mantle [l-3] and for the outer region of stellar 
interiors [4]. Engineering processes where there is heat 

generation by a chemical or nuclear reaction within 
the fluid are common today, and correct process 
design often requires accurate correlations for heat 
transfer coefficient at boundary surfaces. On this last 
point, it is indispensable from reactor safety con- 

siderations to be able to predict the probable magni- 
tude of thermal convective heat transfer with volu- 
metric heat release in relation to post-accident heat 

removal (PAHR) in a liquid metal fast breeder reactor 
(LMFBR). 

Despite its relevance to many important technologi- 

cal and physical problems, thermal convection with 
volumetric energy sources has scarcely been studied 
both analytically and experimentally. Most past 
studies have been conducted under an adiabatic [5,6] 
or cooling [7] conditions at the lower boundary of a 

horizontal fluid layer. So far, there exist very few 
works, except the theoretical study of Cheung [8], 

which treat the combined effects of heating internally 
and from below on thermal convection in a horizontal 
fluid layer. This led the present authors to carry out an 

experimental study of turbulent thermal convection in 
a horizontal fluid layer heated internally and from 
below (combined internal and external heating). 

The experimental results will be compared with a 

simple boundary layer analysis which expresses the 
upper and the lower surface modified Nusselt numbers 
as functions of two independent Rayleigh numbers, 
based respectively on the surface-to-surface tempera- 
ture difference and the volumetric heating rate. In 
addition, a simple correlation will be given for predict- 
ing the bulk core temperature in many practical 
applications. 

363 



364 YOSHIHIRO KIKUCHI, TERUFUMI KAWASAKI and TWTOMU SHIOYAMA 

EXPERIMENTAL APPARATUS AND PROCEDURE 

A schematic diagram of the experimental apparatus 
is shown in Fig. 1. The convection chamber consisted 
of a fluid layer of a dilute aqueous potassium chloride 
solution bounded by two copper plates, which served 
as electrodes for the passage ofelectric current through 
the layer. The overall dimensions of the fluid layer were 
200 x 200 mm, and layer depths were varied from 29 
to 98 mm. Four side walls were made of 10 mm thick 
acrylic resin. A 60 mm thick insulator was equipped to 

keep the side walls in an adiabatic condition. 
The temperature of the upper boundary of the layer 

was held constant with thermostatically controlled 
water circulating through a cooling tank, which was 
soldered to the back of the copper plate (6 mm in 
thickness). Water was pumped to the cooling tank 

from a bath. In order to heat the layer from below, a 
Nichrome-resistance bottom heater was fastened to 
the underside of a 1.6 mm thick aluminum plate, which 

was bolted to the back of the copper plate (10 mm in 
thickness). The aluminum plate was electrically in- 
sulated from the copper plate by a 2 mm thick Bakelite 
plate to evaluate the heat flux to the layer from below. 

Twelve Chrome]-Alumel thermocouples were used 

to monitor the temperatures of copper plates. The 
thermocouple grooves in the plates were drilled to 
within 2 mm of the surface in contact with the test fluid. 
After the thermocouples were set, the grooves were 
filled with solder. For temperature measurements of 
the fluid layer, a small vinyl-coated thermocouple 
(0.5mm in diameter) was used, which could be tra- 
versed vertically with a movement device. 

Alternating electrical current was supplied from two 
line voltage regulators to the fluid and the bottom 
heater independently. Each dissipated power was 
measured with a voltmeter-ammeter combination 
system with a 1% rated accuracy. 

Prior to each experiment, all inner surfaces of the 
convection chamber were thoroughly cleaned. After 

x Thermocouples 

FIG. 1. Experimental apparatus. 

the working fluid was poured into the chamber, the 

horizontal alignment of the chamber was adjusted with 
a spirit level. The experiments were then performed in 
the following manner. Power was supplied to the fluid 

layer and the bottom heater. In order to maintain the 
upper surface at a constant temperature, water was 
circulated into the cooling tank. The fluid layer was 

held nearly at room temperature during the experi- 
ment in order to minimize heat losses. The output 
signals from thermocouples, which measured the tem- 

peratures of the lower and upper plates, both sides of 
the Bakelite plate and the fluid layer, were recorded on 
a strip chart. Sufficient time was allowed for the 
convection development to reach a steady state con- 
dition. Upon reaching a steady state all the tempera- 
ture readings were taken and averaged by a multi- 
channel digital voltmeter, which was controlled by a 

microcomputer. Another two sets of temperature 
readings were taken 10 and 20 minutes later, and when 
good agreement was reached within 0.1 K for each set 

of temperature readings, data were recorded. 

RESULTS AND DISCUSSIONS 

1. External heating case 
In order to establish a base case, experiments were 

first carried out with a bottom-heated fluid layer 
without internal energy sources. In this conventional 
external heating case, the external Nusselt number is 
defined in terms of the layer depth, L, as 

NM, E 4 
LATJL 

where q is the heat flux to the fluid. The external 
Rayleigh number is defined in terms of this same length 
and the surface-to-surface temperature difference, as 

g/3ATL3 
Ra,--. 

CIV 

Figure 2 shows the relation between the external 
Nusselt number and the external Rayleigh number. 
Although data are slightly scattered, the external 
Nusselt numbers correlate well with the external 

Rayleigh numbers assuming a relation of the form 

NM, = cr Rap, 

The resulting heat transfer correlation is 

(3) 

Nu = 0 130 Ra0.290 E . E 1 

2.2 x 106~Ra,~1.1 x lo*. (4) 

The correlation is obtained by a linear regression of 
In (Nu,)vs In (Ra,) through 9 points. The coefficient of 

correlation r2 is 0.970. In Fig. 2 are also indicated the 
correlations obtained by Chu and Goldstein [9] and 
Garon and Goldstein [lo]. The present experimental 
results agree fairly well with those two correlations. 

2. Internal heating case 
In the second series of experiments, however, the 

fluid layer was internally heated under an adiabatic 
lower surface condition. In this internal heating case, 



Thermal convection in a horizontal fluid layer 

Present experiment Nu, -0.130 Ran”’ 

Garan and Goldstein Nu, -0.130 Ra, 
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FIG. 2. Thermal convective heat transfer data and correlation equations in external heating case. 

the internal Rayleigh number and the internal Nusselt 

number at the upper surface are defined as 

Ra 

I 
~ dQL5 and Nu c QL” 

21av 
I 

j.AT 
(5) 

respectively where Q is the rate of volumetric heat 
generation in the fluid. Figure 3 shows that the 
experimental results of the internal Nusselt number 
correlate well with the internal Rayleigh number 
assuming a relation of the form 

Nu, = c, Ra,m,. (6) 

The linear regression of In (Ny) on In (Ra,) gives 

NM, = 0.365 Ra0.238, 

2.3 x 10: 5 Ra, s 3.5 x 109, 

r2 = 0.998, 12 observations. (7) 

In Fig. 3 the experimental results of Kulacki and Nagle 
[S] and Fiedler and Wille [6] are compared with the 

present data. The present results are in good agree- 
ment with these data. 

Figure 4 shows the relationship between the internal 

(Ra,) and external (Ra,) Rayleigh numbers in the 
internal heating case. Ra, appears to be strongly 
dependent upon Ra,. A linear regression of In (Ra,) on 

In (Ra,) gives 

u 

I 

v Present experiment Nu,-0.365 I?o~~‘~ 
.--------- Kulackl and Nagle Nu,-0305Ra~239 
-.-.-.- Fiedler ond Wi Ile Nu, -0 526 Ro~“~ 

31 I I I 
106 IO' 108 109 

RaI 

FIG. 3. Thermal convective heat transfer data and cor- 
relation equations in internal heating case. 

D 

u 

B 

365 

FIG. 4. Relation between internal Rayleigh number and 
external Rayleigh number in internal heating case. 

Ra, = 0.108 Ra1.3’ 
4.1 x 10SEs’RaE 5 1.1 x 108, 

2.3 x lo6 s Ra, 5 3.5 x 109, 

r2 = 0 . 9997 , 12 observations. (8) 

Equation (8) can also be obtained from equation (7) 
combined with the following variation of Nu, : 

Nu,=eL24 QL2 
2AT -= 21AT (9) 

3. Combined internal and external heating case 
The third series of experiments was carried out with 

a fluid layer heated simultaneously from within and 
from below. Figure 5 shows typical measured tempera- 
ture profiles in the layer for 0 5 Ra, 5 2.17 x lo9 at 
nearly constant Ra,. The horizontal axis e is the 
dimensionless temperature difference, (T - T,)/ 
(To - T,) where To and T, are the lower and the 
upper surface temperatures, respectively. The vertical 
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FIG. 5. Dimensionless temperature distributions in hori- 

zontal fluid layer. 

axis X is the dimensionless distance, z/L where L is 
the layer thickness. 

It can be seen from the figure* that for every Ra, and 
Ra, the central core region is nearly isothermal 
because of strong turbulent mixing, and that the fluid 
temperature varies markedly only in thin boundary 
layers near each surface. In this figure other different 
cases are also indicated; (a) external heating and (b) 
internal heating. For the external heating case in which 

there are no volumetric energy sources, i.e. Ra, = 0, the 
dimensionless bulk core temperature Qb is nearly one- 
half. This means that the isothermal core region is at a 
temperature of approximately the arithmetic mean 
between T, and T,. When internal heating is added to 
the layer, i.e. Ra, # 0, the situation is quite different. In 
this case, the fluid layer is heated internally and from 
below (combined internal and external heating). As 
Ra, increases, &, increases from one-half and an 
asymmetry in the temperature field becomes more 

pronounced. At sufficiently high Ra,, eb reaches unity 
and an adiabatic condition is then established at the 
lower surface. There is virtually no thermal boundary 
layer at the bottom of the layer. 

The above-mentioned fact therefore leads us to say 
that the external heating case is an extreme situation 
where Ra, approaches zero in the combined heating 
case, and that the case in which there is an internal 
heating of the layer with an adiabatic lower surface is 
the other extreme situation, in which Ra, depends 
upon the corresponding value of Ra, through the 
correlation given by equation (8). 

In the combined heating case, there are two inde- 
pendent variables, external Rayleigh number Ra, and 
internal Rayleigh number Ra,. Figure 6 carries plots of 

* In Fig. 5 data are eliminated in the boundary layer to 
avoid the plots from lying one upon another and to clarify the 
development of turbulent convection. 
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FIG. 6. Range of experimental conditions in combined 
heating case: Ra,-Ra, space. 

the present data in the Ra,-Ra, space. All the points 
exist in the region of Ra, 5 Ra, 5 0.108Rak.31. The 
range of external and internal Rayleigh numbers is 1.1 
x 10’ 5 Ra, 5 1.8 x 108;2.6 x 10’ s Ra, s 4.3 x 
109. Under these experimental conditions the internal 

heat generation effect is more dominant than the 
external heating. 

To the present authors’ knowledge there is only the 
experimental work of Suo-Anttila and Catton [l l] on 
the turbulent thermal convection problem in a hori- 
zontal fluid layer with combined internal and external 

heating. But only a few data points were obtained in 
their experiments since the purpose of their work was 
to investigate the effect of unequal surface tempera- 
tures on a volumetrically heated fluid layer cooled 
from below and consequently most of their measure- 
ments were performed under bottom cooling 
conditions. 

On the other hand, Cheung [8] studied analytically 
the combined heating fluid layer by a simple boundary 
layer approach. He first assumed that, for the external 
heating case, the relationship between a boundary 
layer Rayleigh number Ra, and a dimensionless 
boundary thickness 6/L is represented by a correlation 
of the form 

Ra, = 53.1 (6/L)mo.3g1 (10) 

where, with AT6 = AT/2, Ra, and 6 are defined as 

gPA Tab 3 
Ra, = ___ 

j.AT, 
and Lip---. (11) 

av 4 

Similarily, for the internal heating case, the Ra, and 
6/L relationship is represented by 

Ra, = 106.2 (6/L)-“.3g1. (12) 

In this situation AT, = AT should be assumed instead 
of AT, = AT/2. 
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Figure 7 shows a comparison of both equations (10) 
and (12) with the present experimental results which 
are derived from equations (4) and (7). A discrepancy is 
seen to occur in both cases; (a) external heating and (b) 
internal heating. This may be attributed to the fact that 
it is dif~cult to determine correctly the Ra, and S/L 
relationship by the experimental results presented in 
the conventional Nu-Ra correlation since the plot of 
Ra, vs 6/L tends to amplify the differences among 
various measured data. A new analysis is, therefore, 
needed to derive a heat transfer correlation expression 
for the combined internal and external heating case. 

Following the conventional definition of Nusselt 
number, i.e. Nu N q a=,” a,/qoonduc,ive, the surface heat 
transfer can be written as 

Nu, = 
41 

i.ATjL + QL/2 

and Nu, = 
40 

AAT/L - QL,‘2 03) 

where subscripts 1 and 0 denote the upper and the 
lower surfaces, respectively. It is noted that Nu, has a 
discontinuity point at IATjL = QL/2, i.e. Ra, = Ra,. 

In the subsequent analysis, therefore, the present data 
are rearranged with the modified Nusselt numbers 

Nu,tz & and Nu,~E&, Q>O. 

(14) 

The relation between Nu,t and Nu,t is obtained from 
conservation of energy, i.e. q, = q. + QL, as the 
following equation 

.N. 
-. 

NC, 

-. 
1. 

‘-41 
l- 

N. 
NC, 

\. _-__ ,‘ \ -. 
--z 

‘L_ ----___ 
-----____ 

. . 
1. --__ 

-1. 
N. 

\. 

‘-1 

FIG. 7. Experimental data and correlation equations 
derived from Cheung’s boundary layer theory. 

HMi25:3 E 

Nu, i - Nu,t = 2. (15) 

From the measured temperature distributions in- 
dicated earlier in Fig. 5, thin thermal boundary layers 
are seen to be fully developed near the upper and the 
lower surfaces. This boundary layer-dominant aspect 
is employed in the present study, which is similar to 
Cheung’s concept. From dimensional considerations, 
a boundary layer thickness 6 and a boundary layer 
Rayleigh number Ra, can be defined as the following 
equations 

(16) 

where AT8 is the temperature difference across the 
boundary layer and AT the surface-to-surface tem- 
perature difference, To - Ti, which is applied to the 
definition of external Rayleigh number Ra,. In the 
above equations, the effects of heat generation within 
the thin thermal boundary layers have been neglected. 

The relationship between 6 and Ra, is assumed as 

Ra, = LT~ (6/Lf’a (18) 

where ct6 and ys are intended to be constant. Since 6/L 

corresponds to the conventional Nusselt number 
[equation (16)] and Ra, is proportional to Ra, 
[equation (1711, equation (18) corresponds to the 
relationship for the external heating case, Nu, = 
+R@. Namely, it is intended that for the combined 
heating case the heat transfer behavior in the boundary 
layer is treated with a similar conventional correlation. 
In turbulent convection the sum of temperature 
differences across the individual boundary layers, AT,,, 
+ AT,,, must be equal to AT. In terms of the 
dimensionless bulk core temperature @,, we obtain 

ATat = &AT and AT,, = (1 - @,)AT (19) 

From equations (16) and (17), the lower boundary 
layer thickness 6, can be related to 0, and Ra, by 

Substitutingequations(i@and(19)intoequation (14), 
we obtain 

Nu 
0 

“r _ Ra, (1 - 0,) 
Ra, &/I. ’ 

Ra, > 0. (21) 

~ombin?tion of equations (20) and (21) yields, after 
rearrangement, the heat transfer correlation at the 
lower surface 

where 

Nu,t Ra, = Go [Ra,( 1 - B,)]*o (22) 

Go= L. 
( > 

W-1 - Pa,,1 1 
and Ho--l+-. 

3 - Yso 
(23) 

%, 

Similarily for the upper boundary layer, we obtain, 
after some manipulations, 
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Nu,+=s 5, Ra,>O, 
Ra, W- 

(24) 

and 

Nu,t Ra, = G, [Ru,&,]~’ (25) 

1;c3-i.a,1 1 
and H,=l+- 

3 - Y& 
(26) 

The constants G,, H,, G, and H, will be directly 
determined with the use of experimental data in the 
Nut - Ra space since the plot of Ra, vs 6/L tends to 

amplify the small differences among various measured 
data. Figure 8 shows the relationship between 
Nu,tRa, and Ra,(l - Q,) in the present measure- 
ments. A linear regression of In [Nu,t Ra,] vs In [Ra, 
(1 - @,)I through 25 data points is 

Nu,t Ru, = 0.257 [Ra,(l - 8,)]1.31, rz = 0.984. 

(27) 

Similar relationship between Nu, t Ra, and Ra,B, is 

shown in Fig. 9. A linear regression of In [Nu, t Ra,] vs 
In [Ra,B,] is 

Nu,t Ra, = 0.201 [Ru,&,]‘~~~, rz = 0.993. (28) 

Consequently, G,, H,, G, and H, have been de- 
termined well as constants. This suggests that the 
assumption given by equation (18) is valid in both the 

upper and the lower boundary layers for the combined 
heating case. 

From equations (15), (27) and (28) the dimensionless 
bulk core temperature eb can be related to two 
independent parameters Ra, and Ra, by 

0.201 [Ra,tl,]’ .31 - 0.257 [Ra,(l - 0b)]1,3’ = 2Ra,. 

(29) 

Graphical representations of these correlations are 
shown in Figs. 10 and 11. In Fig. 10, B, is given as a 

FIG. 8. Generalized heat transfer correlation at lower 
surface in combined heating case. 

- 2X106 IO’ 

FE. 9. Generalized heat transfer correlation 
surface in combined heating case. 

at upper 

function of Ra, and Ra,. In Fig. 11, on the other hand, 
the dependency of Nu, t upon Ra, and Ra, is given, and 
then Nu,t can be easily obtained through equation 

(15). 
As pointed out earlier, the external and the internal 

heating cases can be considered as the extreme situ- 
ations in the combined heating case. Equations (22) 

and (25) will be applied to these extreme cases to verify 
a consistency of heat transfer correlations obtained in 
the combined heating case. In the external heating case 
0, is one-half, and then both 6,/L and 6, jL are equal 
to 1/2Nu,. Application of these relations to equations 

(21) and (24) approaches a limit for the heat transfer 
correlations at the lower and the upper surfaces: 

and 

+ Nu, Ra,. 

According to the correlation given by the experimental 

data, G,, H,, G, and H, are determined as constants 
for the combined heating case. If the assumption that 
G,, H,, G, and H, are constant all over the domain 
from the external heating to the internal heating, these 
values can be predicted from the heat transfer cor- 

relation in the extreme situation, i.e. Nu, = ckRu);~. 
Substituting equation (4) into equations (22) and (30), 

we obtain G, = 0.318 and H, = 1.29, which differ a 
little from the values (G, = 0.257 and H, = 1.31) given 
in equation (27). 

In the internal heating case, on the other hand, the 
upper surface heat flux q, is equal to QL and the 
dimensionless bulk core temperature Ob is unity. 
Consequently, equation (25) reached the following 
expression 

2Ru I = G Ru”‘. I t (31) 
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FIG. 10. Et&t of internal and external Rayleigh numbers FIG. 12. Variation of dimensionless turbulent core tem- 
on dimensionless turbulent core temperature. perature under different heating conditions. 

FIG. 11. Effect of internal and external Rayleigh numbers 
on modified Nusselt number at upper surface. 

From equations (8) and (31), we obtain G, = 0.216 
and H, = 1.31. Then the heat transfer correlation is 
expressed by 

Nu,t Ra, = 0.216 [Ra, 0r,]‘.31. (32) 

This equation is in good agreement with equation (28). 
From the above-mentioned fact G, z G, and H, 2 

H,. Assumption of G, = G, = 0.2 and H, = H, = 
1.31 then yields the following heat transfer 
expressions : 

and 

Nu,t Ra, = 0.2 [I&,(1 - t?,)]‘.31 

Nu,t Ra, = 0.2 [Ru,&,]‘~~~. 

With a new parameter 4, therefore, the heat transfer 
correlations can be approximated as 

Nu,t = ( i $2= 
2(1 - e,y- 

4 
(33) 

and 

where 4 is defined as 

(35) 

In other words, # = 0 and 4 = 1 correspond to the 
external and the internal heating cases, respectively. 
The combined heating case is located in the domain of 
0 < Q, < 1. From equations (15) (33) and (34), the 
correlation between 0, and 4 is represented by a simple 
form 

&, = fji.3’ _ (1 -Q-31 
(36) 

Figure 12 shows a comparison of equation (36) with 
the present experimental data. Although equation (36) 
predicts slightly smaller values of &, than the experi- 
mental data, it is very useful for many practical appli- 
cations since the bulk core temperature can be easily 
obtained with some degree of accuracy from equation 
(36) which has only the variable # instead of two 
independent variables Ra, and Ra,. 

CONCLUSIONS 

An experimental study has been conducted to 
investigate the effect of bottom heating on thermal 
turbulent convective heat transfer in a horizontal water 
layer with volumetric energy sources. Joule heating by 
alternating current passing through the layer provided 
the volumetric energy sources. For bottom heating a 
Nichrome resistance heater was used, which was 
electrically insulated from the layer. Measurements 
were made of the temperature distribution in the layer 
as well as the lower and the upper surface tempera- 
tures. Comparison of the experimental results with the 
boundary layer analysis yielded the following 
conclusions : 

(1) Heat transfer correlations at the lower and the 
upper surfaces are expressed by equations (27) and 
(28), respectively. 

(2) The bulk core temperature can be easily pre- 
dicted from equation (36) which has only the variable 
4 derived primarily from the relationship between Ra, 
and Ru, for the internally heated layer with the 
adiabatic lower surface. 
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CONVECTION THERMIQUE DANS UNE COUCHE DE FLUIDE HORIZONTALE ET 
CHAUFFEE DANS LA MASSE ET PAR LE BAS 

R&umC-On donne les r&hats exp&imentaux d’une etude de la convection thermique turbulente dans une 
couche d’eau horizontale avec des sources d’knergie uniformes et volumttriques et avec un chauffage B la base, 
d flux constant. Les donnCs exp&imentales sont cornpar& avec une analyse simple B couche limite qui 
exprime les nombres de Rayleigh indkpendants, basis respectivement sur le taux de chauffagevolumttrique et 
sur la diflbrence de temp&ature entre les surfaces. Une dquation pratique est obtenue pour la temp&ature 
moyenne du coeur en fonction d’un parambtre adimensionnel attach6 aux niveaux relatifs des chauffages 

inteme et exteme. 

FREIE KONVEKTION IN EINER VON INNEN UND VON UNTEN BEHEIZTEN 
HORIZONTALEN FLUSSIGKEITSSCHICHT 

Zusammenfassung-Dies Arbeit behandelt experimentelle Ergebnisse bei turbulenter freier Konvektion in 
einer horizontalen Wasserschicht mit gleichfiirmig verteilten volumetrischen WLrmequellen und konstanter 
Wsrmezufuhr von unten. Die Mel3daten wurden mit den Ergebnissen einer einfachen Grenzschichtuntersu- 
chung verglichen, wobei die auf die obere und untere GrenzHSiche bezongenen Nusselt-Zahlen als Funktion 
von zwei unabhiingigen Rayleigh-Zahlen ausgedriickt wurden, die sinngemlB mit der volumetrischen 
WIrmezufuhr und der Temperaturdifferenz zwischen den OberEchen gebildet wurden. Fiir die mittlere 
Fliissigkeitstemperatur wurde eine praktische Korrelationsbeziehung abgeleitet, die von einem einzigen 
dimensionslosen Parameter abhlngt, der die relativen Anteile von innerer und SuBerer Wgrmezufuhr 

beriicksichtigt. 

TErLJIOBAIl KOHBEKUMII B TOPM30HTAJIbHOM HAI-PEBAEMOM M3HYTPM 
kI CHM3Y CJIOE XKMAKOCTM 

AHHoTaunn ~ npeACTaB.“eHbI 3KCnepHMeHTaAbHbIe p‘Z3yAbTaTbI n0 Typ6yJIeHTHOti TenJEOBOi? KOHBCKUHH 
B rOpH30HTaAbHOM C."OC BOAbI, conepnauerd on~opoA~0 pacnpeAeneHHb,e no 06%~~ TennoBbIe 

BCTOVHUKH H Harp’ZBaeMOM CHH3y C noCTOnHHOfi HHTeHCHBHOCTbH). npOBeAeH0 CpaBHeHHe 3KCnepH- 
MeHTa.“bHblX AaHHblX C pe3yJbTaTaM,I npOCTOr0 aHaAHTH9eCKOrO HCCncAOBaHHn B npH6nuEemis 
norpaHHYnor0 cnoB. B KOTOpOM MOAH+HuHpOBaHHbIe ‘,ACJLa HyCCeJIbTa WB BepXHeti H HHmHeii 

noeepxHocTeti BblpamanHCb KBK @YHKUUH A~yx HeSaBHCAMbIX YHcen Penes, OTHeCeHHbIX COOTBCT- 
CTBeHHO K AHTeHCHBHOCTH 06beMHOrO HarpeBa H pa3HOCTH TeMnepaTyp MeKAy nOBepXHOCTXMH. 
BbIBeAeHo npaKra9ecKoe KpeTepaanbHoe ypaBHeHse arm 0npeAeneHss TeMnepaTypbI B UeHTpe cnofl, 
3aBACBmefi OT eAHHCTBeHHOr0 6e3pa3MepHorO napaMeTpa, KOTOpbIfi XapaKTcpH3yeT OTHOCHTenbHyH, 

RHTeHCHBHOCTb BNyTpeHHcrO H BHclllHerO HarpeBOB. 


